Cor 2.4 Let $U \subset \mathbb{C}$ be open, $f: U \rightarrow$ \mathbb{C}, and $V=\left\{(x, y) \in \mathbb{R}^{2} \mid z=x+i y \in U\right\}$. Then f is analytic in U if and only if u and v are continuously differentiable in V and if

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \quad \frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}
$$

Def 4.2 A harmonic function on $V \subset$ \mathbb{R}^{2} is a twice continuously differentiable function $u: V \rightarrow \mathbb{R}$ such that the Laplace's equation holds

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

Thm 4.5 Let $f: U \subset \mathbb{C} \rightarrow \mathbb{C}$ be analytic, where $f=u+i v$. Then u, v are harmonic functions

Cor 8.4 $U \subset \mathbb{C}$ open $f: U \rightarrow \mathbb{C}$ analytic then f is C^{∞}

Thm 8.5(Liouville) Every bounded entire function is constant

Thm 7.7[Maximums modolus principle] $K \subset \mathbb{C}$ compact, and $f: K \rightarrow \mathbb{C}$ continuous and analytic on $U=\operatorname{Int}(K)$ interior of K. Then, $|f|: K \rightarrow \mathbb{C}$, $z \mapsto|f(z)|$ assumes its maximum on ∂K.

Def The concept is the same as the principal branch but, $\log (w)=\ln |w|+$ $\operatorname{iarg} w+i 2 k \pi$ where $k=0, \pm 1, \pm 2, \ldots$.

Sin and Cos

$\sin (z)=\frac{e^{i z}-e^{-i z}}{2 i} \quad \cos (z)=\frac{e^{i z}-e^{-i z}}{2}$
$e^{i z}=\sum_{n=0}^{\infty} \frac{i^{n}}{n!} z^{n}, \sin (z)=\sum_{n \geq 0} \frac{i^{2 n}}{(2 n+1)!} z^{2 n+1}$
$\cos (z)=\sum_{n \geq 0} \frac{i^{2 n}}{(2 n)!} z^{2 n}$

Series

Thm (Cauchy-Hadamard) Let a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$, then the radius of convergence is given by $R=\frac{1}{\limsup \left|a_{n}\right|^{\frac{1}{n}}}$ Moreover, $\quad \sum_{n=0}^{\infty} a_{n} z^{n}$ converges absolutely if $|z|<R$ (diverges otherwise).

Part. Frac g, h complex polynomials, $h=c \cdot \prod_{i=1}^{s}\left(z-z_{i}\right)^{n_{i}} \neq 0$ with z_{1}, \ldots, z_{s} pairwise distinct and $n_{i}, \ldots, n_{s} \geq$ 1. Then there are a polynomial q and $c_{i,-n_{i}}, \ldots, c_{i,-1} \in \mathbb{C}$ for $i=1, \ldots, s$ such that

$$
\frac{g}{h}=q+\sum_{i=1}^{s} \sum_{k=-n_{i}}^{-1} c_{i, k}\left(z-z_{i}\right)^{k}
$$

Complex integration

Length Let γ be a smooth arc with parametrization $z:[a, b] \rightarrow \mathbb{C}$. The length of γ is
$l(\gamma)=\int_{a}^{b}\left|z^{\prime}(t)\right| d t=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} d t$
Def $U \subset \mathbb{C}$ open, $f: U \rightarrow \mathbb{C}$ continuous, $f=u+i v$ and $z:[a, b] \rightarrow \mathbb{C}$ smooth arc with $\gamma=\operatorname{Im}(z) \subset U, z=x+i y$. Then the integral of f along γ is

$$
\int_{\gamma} f=\int_{\gamma} f(z) d z=\int_{a}^{b} f(z(t)) z^{\prime}(t) d t
$$

Thm $5.5 f: U \rightarrow \mathbb{C}$ continuous with primitive $F . \quad \Gamma \subset U$ contour with parametrization $z:[a, b] \rightarrow U$ then

$$
\int_{\Gamma} f=F(z(b))-F(z(a))
$$

Pro 5.7 $U \subset \mathbb{C}$ open, $f: U \rightarrow \mathbb{C}$ continuous, $\Gamma \subset U$ contour of legth $l(\Gamma)$ and
$M=\max \{|f(z)| \mid z \in \Gamma\}$ then

$$
\left|\int_{\Gamma} f\right| \leq M l(\gamma)
$$

Thm 6.1(Cauchy) Let $U \subset \mathbb{C}$ open, $f: U \rightarrow \mathbb{C}$ analytic and $\Gamma \subset U$ closed contour. If Γ is contractible, then

$$
\int_{\Gamma} f(z) d z=0
$$

Thm(Cauchy Integral formula) Let Γ be a simple closed positively oriented contour. If f is analytic in some simply connected domain D containing Γ and z_{0} is any inside Γ, then

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{\Gamma} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z
$$

Thm Let $U \subset \mathbb{C}$ open with $\mathbb{R} \subset U$, and $S=\{z \in \mathbb{C} \backslash U \mid \operatorname{Im} z>0\}$. Take $f: U \rightarrow \mathbb{C}$ analytic such that $S \subset$ \{poles of $f\}$. If there are $c, r>0$ such that $|f(x)| \leq \frac{c}{|x|^{2}}$ for all $z \in U$ with $\operatorname{Im} z \geq 0$, then the limit converges, S is finite and

$$
\int_{-\infty}^{\infty} f(x) d x=2 \pi i \cdot \sum_{z \in S} \operatorname{Res}_{z} f
$$

Thm $11.7 g$, h polynomials with $\operatorname{deg} h \geq \operatorname{deg} g+1, h(z) \neq 0$ for $x \in \mathbb{R}$, $k \neq 0$ then

Def $f: U \rightarrow \mathbb{C}$ analytic and $S=\{z \in$ $U \mid f(z)=0\}$ zeros of f. The logarithmic derivative of f is $\frac{f^{\prime}}{f}: U \backslash S \rightarrow \mathbb{C}$

Pro $f: D_{\epsilon}^{\circ} \subset U \rightarrow \mathbb{C}$ with $\operatorname{ord}_{z_{0}} f \neq$ $-\infty$ and $f(z) \neq 0$ for $z \in D_{\epsilon}^{\circ}\left(z_{0}\right)$. Then

- $\operatorname{ord}_{z_{0}} \frac{f^{\prime}}{f}=-1$ if $\operatorname{ord}_{z_{0}} f \neq 0$
- $\operatorname{ord}_{z_{0}} \frac{f^{\prime}}{f} \geq 0$ if $\operatorname{ord}_{z_{0}} f=0$
- $\operatorname{Res}_{z_{0}} \frac{f^{\prime}}{f}=\operatorname{ord}_{z_{0}}(f)$

Def(Winding Number) Let γ a closed arc in \mathbb{C}, and assume $z \in \mathbb{C} \backslash \gamma$. The winding number of γ around z_{0} is

$$
W(\gamma, z)=\frac{1}{2 \pi i} \int_{\gamma} \frac{1}{w-z} d w
$$

Thm (Residue Formula) Let $U \subset \mathbb{C}$ be open, and $\gamma \subset U$ be a contractible closed arc. Assume $f: U \backslash\left\{z_{1}, \ldots, z_{s}\right\} \rightarrow \mathbb{C}$ analytic, where $\left\{z_{1}, \ldots, z_{s}\right\} \in U \backslash \gamma$ are poles of f. Then,

$$
\int_{\gamma} f=2 \pi i \sum_{i=1}^{s} W\left(\gamma, s_{i}\right) \cdot \operatorname{Res}_{z_{i}} f
$$

Thm 12.2 (Argument principle) f :

$$
\sum_{z \in \gamma^{i n t}} \operatorname{ord}_{z} f=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z
$$

Cor $f: U \rightarrow \mathbb{C}$ analytic and z_{0} pole of f of order $m \geq 1$. Then,
$\operatorname{Res}_{z_{0}} f=\frac{1}{(m-1)!} \cdot \frac{d^{m-1}}{d z^{m-1}}\left[\left(z-z_{0}\right)^{m} f(z)\right]_{z=\neq \tilde{q} \in \gamma,}^{\text {with } \gamma^{\text {int }} \subset} \begin{gathered}\text { then }\end{gathered}$
Cor $f: U \rightarrow \mathbb{C}$ analytic with a simple pole at z_{0}. Let $g: U \cup\left\{z_{0}\right\} \rightarrow \mathbb{C}$ analytic. Then

$$
\operatorname{Res}_{z_{0}} f g=g\left(z_{0}\right) \cdot \operatorname{Res}_{z_{0}} f
$$

$$
\sum_{z \in \gamma^{\text {int }}} \operatorname{ord}_{z} f=\sum_{z \in \gamma^{i n t}} \operatorname{ord}_{z} g
$$

Thm 12.7 $\mathcal{F}(\hat{\mathbb{C}})\{g / h: \hat{\mathbb{C}} \rightarrow \hat{\mathbb{C}}\}$ and for every $f \in \mathcal{F}(\widehat{\mathbb{C}}) \backslash\{0\}, \sum_{z \in \hat{\mathbb{C}}} \operatorname{ord}_{z} f=0$

